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Agenda

Motivate problem: Autonomous Vehicles are Prone to Failure

Anomaly Detection through Explanations (ADE): a Diagnhosis Tool for AVs.
Adversarial Examples as a StressTesting Framework for Autonomous Robustness.

Ongoing work: Explainable Tasks for Robust and Secure Hybrid Systems.

Question: How to develop self-explaining architectures that can help anticipate failures
instead of after-the-fact?




Autonomous Vehicles are Prone to Failure
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Predictive Inequity in Object Detection
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K. Eykholt et al. “Robust Physical-World Attacks on Deep Learning Visual Classification.”



Very comfortable

Comfort

Not comfortable

Autonomous Vehicle Solutions are at Two Extremes

Serious safety lapses led to Uber's fatal self-
driving crash, new documents suggest

Problem: Need better
common sense and
reasoning

My Herky-Jerky Ride in General Motors' Ultra-Cautious Self Driving

Car

GM and Cruise are testing vehicles in a chaotic city, and the tech still has a ways to go.

Not cautious

Cautious

Very cautious



Complex Systems Include People

Misalignment of Expectations
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Solution: Built-in structures to
deal with flaws and failures
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| have a fat free yogurt here but it's gone...

Lack of communication Expectation



Architecture Inspired by Human Organizations
Communication and Sanity Checks

------------------

’i‘ ,i| 1. Hierarchy of overlapping

__________________ committees.
IR e &V, e s Local Sanity Check | . . .
Mmoo r" Oeal SAnTy HReCS 1 2. Continuous interaction
------------------ . R and communication.
|i| |ﬂ| |i| |i| o -| 3. When failure occurs, a
- - o : ; ynthesizer to reconcile
""""""""" A inconsistencies between parts. story can be made,

combining the
members’ observations.



An Architecture to Mitigate Common Problems
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Synthesizer to reconcile |
iInconsistencies between parts. | ,

_____________________

The Trollable Self-Driving
Car

| TEMPE |

’m DEADLY CRASH WITH SELF- DRIVING UBER

Reconcile conflicting reasons. Justify new examples.



An EXxisting Problem
The Uber Accident




Solution: Internal Communication

Anomaly Detection through Explanations
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Synthesizer to reconcile inconsistencies
between monitor outputs.

'he best option Is to veer and slow down.
'he vehicle Is traveling too fast to suddenly
stop. The vision system Is inconsistent, but
the lidar system has provided a reasonable

and strong claim to avoid the object moving
across the street.

~
\

- — —— = = = = A

\
I
I
I

TACTICS

— e e e mmm e e = —




Anomaly Detection through Explanations (ADE): a Diagnosis Tool for AVs.

Adversarial Examples as a StressTesting Framework for Autonomous Robustness.

Ongoing work: Explainable Tasks for Robust and Secure Hybrid Systems.



Limited Internal Reasoning

A Google self-driving car caused a crash
for the first time

A bad assumption led to a minor fender-bender

Serious safety lapses led to Uber's fatal self-
driving crash, new documents suggest

My Herky-Jerky Ride in General Motors' Ultra-Cautious Self Driving
Car

GM and Cruise are testing vehicles in a chaotic city, and the tech still has a ways to go.




Reconciling Internal Disagreements

With an Organizational Architecture

- Monitored subsystems combine Synthesizer

iInto a system architecture. / N \

- Explanation synthesizer to deal T < pmm— - < P <
with inconsistencies. : VISION : || LiDAR : || TACTICS :
. Argumenttree. T T / I \
+ Queried for support or TS S TTTE TS e T T S
counterfactuals. ' Brakes | ' Steering | | Power
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Anomaly Detection Through
Explanations




Anomaly Detection through Explanations

Reasoning in Three Steps

Synthesizer

4 1 Generate Symbolic Qualitative
Descriptions for each committee.

/ \ [ \ [ \ o™ . . . . .
. <" |nput qualitative descriptions into local
" VISION ' ' LiDAR ' ' TACTICS ! o,y PULY S OSCTIP 0 1oca
| I | I | I
. , . , . , ... “reasonableness” monitors.
e N ____ .t N L
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Synthesizer

- Explanation synthesizer to
deal with inconsistencies.

- Argument tree.

- Queried for support or
counterfactuals.

Use a synthesizer to reconcile
Inconsistencies between monitors.

Priority Hierarchy

1. Passenger Safety
2. Passenger Perceived Safety
3. Passenger Comfort

4. Efficiency (e.g. Route efficiency)

Abstract Goals

A passenger is safe If:

* The vehicle proceeds at
the same speed and
direction.

 The vehicle avoids
threatening objects.



Use a synthesizer to reconcile
Inconsistencies between monitors.

(Vs,t € STATE,v € VELOCITY
((Self, moving,v), state, s) A

A passenger is safe if:

* The vehicle proceeds at

the same speed and
((Self, moving,v), state, t) A direction.

(Ax € OBJECTS s.t.
((x, iISA, threat), state, S) V

((x, isA, threar), state, 1))

(1, iIsSuccesorState, s5) A

* The vehicle avoids
threatening objects.

= (passenger, hasProperty, safe)

(Vs € STATE,x € OBJECT,v € VELOCITY
((x, moving,v), state, S) A

((x, locatedNear, self ), state, S) A
((x, isA, large_object), state, S)

= ((x, isA, threat), state, S))



Use a synthesizer to reconcile
Inconsistencies between monitors.

(Vs,t € STATE,v € VELOCITY

((Self, moving,v), state, s) A

(1, iIsSuccesorState, s5) A

((Self, moving,v), state, t) A
(Ax € OBJECTS s.i.

((x, iISA, threat), state, S) V

((x, isA, threat), state, t)))

= (passenger, hasProperty, safe)

Abstract Goal Tree

'passenger 1s safe',
AND (
‘'safe transitions’,
NOT( ‘threatening objects’)




Use a synthesizer to reconcile
Inconsistencies between monitors.

Abstract Goal Tree

'passenger 1s safe',
AND (
‘safe transitions’,
NOT( ‘threatening objects’)

List of Rules . | Backwards Chain - AND/OR TREE
IF ( AND('moving (?v) at state (?y)’', passenger 1s safe at V between s and t
' (?z) succeeds (?y) ', AND (AND (moving V at state s
'moving (?v) at state (?2z)"'"), t succeeds s
THEN ('safe driving at (?v) during (?y) and (?2z) ")) moving V at state t )
IF (OR('obj 1s not moving', AND  ( o |
'obj 1s not located near', OR ( obj 1s not moving at s
'obj 1s not a large object')), obj] 1s not locatedNear at s
THEN ('obJ not a threat at (?x)"') obj is not a large object at s )
OR ( obj 1s not moving at t
IF (AND('ob] not a threat at (?y)’, obj is not locatedNear at t
'obj] not a threat at (?2z)', .. .
' (22) succeeds (22) ', ob] 1s not a large object at t ) ) )
THEN ('obj 1s not a threat between (?y) and (?2z) "))




(monitor, judgement, unreasonable)
(input, 1sType, labels)

(all labels, inconsistent, negRel)
(1sA, hasProperty, negRel)

(all labels, notProperty, nearMiss)
(all labels, locatedAt, consistent)
(monitor, recommend, discount)

(monitor, judgement, reasonable)
(input, 1isType, sensor)

(input data]
(input data[
(input data]
(1nput data]

hasSize, large)

b |

= b b b

], hasProperty, avoid)

(monitor, recommend, avoid)

], IsA, large object)
], moving, True)

(monitor, judgement, reasonable)
(input, 1sType, history)

(input data, moving, True)
(input data, direction, forward)
(input data, speed, fast)

(input data, consistent, True)
(monitor, recommend, proceed)

Use a synthesizer to reconcile
Inconsistencies between monitors.

Abstract Goal Tree

'passenger 1s safe',
AND (
‘safe transitions’,
NOT( ‘threatening objects’)

'he best option Is to veer and slow down.
'he vehicle is traveling too fast to suddenly
stop. The vision system Is inconsistent, but
the lidar system has provided a reasonable
and strong claim to avoid the object moving
across the street.




Uber Example in Simulation

Secver 45 FPS
Client: 49 FPS

Vehicle: Nissan Micra
Map: Town04
Simulation time: 0:00:05

Speed: 4 km/h
Heading: 9° N —
Location: L e e R :

GNSS: ( 48.999663, 7.996980)
Height: 4 m

Throttle:
Steer:
Brake:
Reverse:
Hand brake:
LELEL
Gear:

Collision:

Number of vehicles:

L. H. Gilpin, V. Penubarthi and L. Kagal, "Explaining Multimodal Errors in Autonomous Vehicles," 2027 IEEE 8th International Conference on Data Science and
Advanced Analytics (DSAA), 2021, pp. 1-10, doi: 10.1109/DSAA53316.2021.9564178.



Evaluation of Error Detection is Difficult

Outside attachment

1-1 point

Real-world Inspired Scenarios Reconcile Inconsistencies
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We have selected 10 traffic scenarios from the NHTSA pre-crash typology to inject challenging driving situations into traffic patterns encountered by

3 12 7%
.
" ")
autonomous driving agents during the challenge 002 ’ L .00 6 “ . ‘ lm.“
o Ve 2 00 . " (4] [
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Traffic Scenario 01: Control loss without previous action

e | , Real errors: Examining errors on the
B ET TIIs et validation dataset of NuScenes leaderboard.

4
Frequency
8
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Traffic Scenario 02: Longitudinal control after leading vehicle’s brake

« Definition: Leading vehicle decelerates suddenly due to an obstacle and ego-vehic

must react, performing an emergency brake or an avoidance maneuver

Priority Correctness | False Positives | False Negatives

No synthesizer 85.6% 7.1% 7.3%

st 5 Ol ot Single subsystem 88.9% 7.9% 3.2%
Definition: The ego-vehicle encounters an obstacle / unexpected h
p ergency br; d

Safety 93.5% 4.8% 1.7%




Adversarial Examples as a StressTesting Framework for Autonomous Robustness.

Future work: Explainable Tasks for Robust and Secure Hybrid Systems.



Vision: Real World Adversarial Examples
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“Realistic” Adversarial examples

L. H. Gilpin, A. Amos-Binks, "Close Syntax but Far Semantics: A Risk Management Problem for Autonomous Vehicles.” To Appear in Abstracts of the AAAI Fall
Symposium on Cognitive Systems for Anticipatory Thinking.



Vision: Real World Adversarial Examples
Anticipatory Thinking Layer for Error Detection
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The traffic lights are on top of the truck. The
ights are not illuminated. The lights are
moving at the same rate as the truck,
therefore this Is not a “regular’” traffic light for
slowing down and stopping at.

“Realistic” Adversarial examples



he traffic lights are on top of the truck
'he lights are not illuminated. The lights

are moving at the same rate as the truck,

therefore this I1s not a "regular”
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Explanatory Error Detection

Content

Testing Framework in Two Parts
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Lack of Data and Challenges for AVs

« Existing Challenges

e Jargeted as optimizing a mission or
trajectory and not safety.

e Data I1s hand-curated.
 Failure data is not available

* Unethical to get it (cannot just drive
into bad situations).

 Want the data to be realistic (usually
difficult in simulation).

Data from NuScenes



Existing Challenges and Benchmarks

Not Focused on Out of Domain Errors

We have selected 10 traffic scenarios from the NHTSA pre-crash typology to inject challenging driving situations into traffic patterns encountered by

autonomous driving agents during the challenge.

Traffic Scenario 01: Control loss without previous action O bse rved erro rS

¢ Definition: Ego-vehicle loses control due to bad conditions on the road and it must

recover, coming back to its original lane.

Traffic Scenario 02: Longitudinal control after leading vehicle’s brake

¢ Definition: Leading vehicle decelerates suddenly due to an obstacle and ego-vehicle

must react, performing an emergency brake or an avoidance maneuver.

Traffic Scenario 03: Obstacle avoidance without prior action

¢ Definition: The ego-vehicle encounters an obstacle / unexpected entity on the road and

must perform an emergency brake or an avoidance maneuver.




Other Challenges Not Anticipatory

Not Focused on Error Detection
AvroDrwine GT F

Observed errors

O

Content generated errors

O




Approach: Content Generation
Anticipatory Thinking Layer for Error Detection
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DALL-E Generates “A chair in the shape of an avocado”



Approach: Content Generation
’ Anticipatory Thinking
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Generate images with shadows before
tunnels.

Generate images with fallen signs.

Generate images with trucks carrying
traffic lights.

Generate “dangerous driving.”
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Approach: Content Generation

Ant|C|patory Thlnklng Layer for Error Detection
LY e

@ & e @ . @ ?ﬁ'r 1Q wid
oo o @@@mma,

| -

&
Q@b
Hee o

|

Generate images with shadows before
tunnels.

Generate images with fallen signs.

Generate images with trucks carrying
traffic lights.

* m@@@i¢

Generate “dangerous driving.” n v




QD
-y ]
4

Generate images with shadows before
tunnels.

Generate images with fallen signs.

Generate images with trucks carrying
traffic lights.

Generate “dangerous driving.”

S. Xu, L. Mi and L.H. Gilpin.

Approach: Content Generation
Ant|C|patory Thlnklng Layer for Error Detection

“A Framework for Generating Dangerous Scenes for Testing Robustness.”

Under Review. 2022.



Generate images with shadows before
tunnels.

Generate images with fallen signs.

Generate images with trucks carrying
traffic lights.

Generate “dangerous driving.”

Approach: Content Generation

Image coordinate system
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S. Xu, L. Mi and L.H. Gilpin. “A Framework for Generating Dangerous Scenes for Testing Robustness.” Under Review. 2022.



Approach: Content Generation
Anticipatory Thinking Layer for Error Detection
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- Generate images with shadows before
tunnels.
Generate images with fallen signs.

- A

| Generate images with trucks carrying
Fallen signs traffic lights.

Generate “dangerous driving.”




Need for Context and Explanation

B)adriveway — UsedFor — [ a truck

Weight: 2.83

BJAtruck — UsedFor — [ hauling things

Weight: 1.0

- e *r

“Realistic” Adversarial



Approach: How 1t Works

Use Adversarial Images in Dev Testing

» Solution: Use a cognitive architecture that helps to anticipate and understand
these failure cases.

* Assess autonomous vehicles for their risk management capabillities before
being deployed and provide incident level risk management explanations in

human readable form.
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Dev 3 Deploy
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Integrated error

detection Observed errors

Explanatory Error Detection

Content
generated errors

Conten
generation +—

R e ERGLLECLTETELTET RN PF




Impact
Anticipatory Thinking Layer for Error Detection

 Goal - Develop methods that a priori can explain an autonomous vehicle’s
ability to manage the risks stemming from errors in perceiving their
environment.

* One possible solution is to explain why the autonomous behavior is safe (or
risky, trustworthy, etc.) or not.

* Impact - Consumer confidence and safety features, appropriate legal and
regulatory oversight.



Agenda

Motivate problem: Autonomous Vehicles are Prone to Failure
Anomaly Detection through Explanations (ADE): a Diagnhosis Tool for AVs.
Adversarial Examples as a StressTesting Framework for Autonomous Robustness.

Ongoing work: Explainable Tasks for Robust and Secure Hybrid Systems.




Hybrid Systems with Humans and Machines
Working Together on Shared Tasks

humans complex system

Explanations are a debugging language.

 Debugging: humans can improve
complex systems.

 Education: complex systems can
“Improve” or teach humans.



Ex post facto explanations

Log data “Explanation”

- Learning system
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Debugging

Sensor data



Log data

Saliency map

Symbolic system

~ Learning system
_‘____ = ' E S output layer The ObjeCt to the Ieft IS 5 / ? \
— Ty T T -

ft tall, moving towards
the right. It’s the salient ’
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Validation
Help on tasks
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Contextual justification: “This is
a person because they have the
right shape and movement.”
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Sensor data

Dev testing Game adversaries Security



Impact

Confidence and Integrity of Systems

Society Liability Robustness

Systems that articulately communicate Systems that can testify, answer Dynamic detection of failure and
with humans on shared tasks. questions, and provide insights. Intrusion with precise mitigation.



Contributions

The problem: Autonomous Vehicles are Prone to Failure.
Anomaly Detection through Explanations (ADE): a Diagnosis Tool for AVs.

Adversarial Examples as a StressTesting Framework for Autonomous Robustness.

Explainable Tasks for Robust and Secure Hybrid Systems.



