
Leilani H. Gilpin
Assistant Professor
Dept. of Computer Science &
Engineering, UC Santa Cruz

Accountability Layers
Stress-testing Using Explainable AI for Safety-critical Systems

Agenda

Motivate problem: Autonomous Vehicles are Prone to Failure

Anomaly Detection through Explanations (ADE): a Diagnosis Tool for AVs.

Ongoing Work: Adversarial Examples for as a Stress Testing Framework.

Question: How to develop self-explaining architectures that can help anticipate failures
instead of after-the-fact?

Autonomous Vehicles are Prone to Failure

K. Eykholt et al. “Robust Physical-World Attacks on Deep Learning Visual Classification.”

Autonomous Vehicle Solutions are at Two Extremes

Cautious

Comfort

Not cautious Very cautious

Not comfortable

Very comfortable

Problem: Need better
common sense and

reasoning

An Existing Problem
The Uber Accident

Solution: Internal Communication
Anomaly Detection through Explanations

VISION LiDAR TACTICS

Synthesizer The best option is to veer and slow down.
The vehicle is traveling too fast to suddenly
stop. The vision system is inconsistent, but
the lidar system has provided a reasonable
and strong claim to avoid the object moving
across the street.

Synthesizer to reconcile inconsistencies
between monitor outputs.

Agenda

Motivate problem: Autonomous Vehicles are Prone to Failure

Anomaly Detection through Explanations (ADE): a Diagnosis Tool for AVs.

Ongoing Work: Adversarial Examples for as a Stress Testing Framework.

Reconciling Internal Disagreements
With an Organizational Architecture

• Monitored subsystems combine
into a system architecture.

• Explanation synthesizer to deal
with inconsistencies.

• Argument tree.

• Queried for support or
counterfactuals. Power

VISION LiDAR TACTICS

SteeringBrakes

Synthesizer

Anomaly Detection Through
Explanations

Anomaly Detection through Explanations
Reasoning in Three Steps

Power

VISION LiDAR TACTICS

SteeringBrakes

Synthesizer

Generate Symbolic Qualitative
Descriptions for each committee.

1.

2. Input qualitative descriptions into local
“reasonableness” monitors.

3. Use a synthesizer to reconcile
inconsistencies between monitors.

• Explanation synthesizer to
deal with inconsistencies.

• Argument tree.

• Queried for support or
counterfactuals.

1. Passenger Safety

2. Passenger Perceived Safety

3. Passenger Comfort

4. Efficiency (e.g. Route efficiency)

A passenger is safe if:

• The vehicle proceeds at
the same speed and
direction.

• The vehicle avoids
threatening objects.

Priority Hierarchy

3. Use a synthesizer to reconcile
inconsistencies between monitors.

Synthesizer + Abstract Goals

3. Use a synthesizer to reconcile
inconsistencies between monitors.

(∀s ∈ STATE, x ∈ OBJECT, v ∈ VELOCITY

((x, moving, v), state, s) ∧

((x, locatedNear, self), state, s) ∧

((x, isA, large_object), state, s)
⇔ ((x, isA, threat), state, s))

(∀s, t ∈ STATE, v ∈ VELOCITY

((self, moving, v), state, s) ∧
(t, isSuccesorState, s) ∧

((self, moving, v), state, t) ∧
(∄x ∈ OBJECTS s.t.

((x, isA, threat), state, s) ∨

((x, isA, threat), state, t)))

⇒ (passenger, hasProperty, safe)

A passenger is safe if:

• The vehicle proceeds at
the same speed and
direction.

• The vehicle avoids
threatening objects.

3. Use a synthesizer to reconcile
inconsistencies between monitors.

(∀s, t ∈ STATE, v ∈ VELOCITY

((self, moving, v), state, s) ∧
(t, isSuccesorState, s) ∧

((self, moving, v), state, t) ∧
(∄x ∈ OBJECTS s.t.

((x, isA, threat), state, s) ∨

((x, isA, threat), state, t)))

⇒ (passenger, hasProperty, safe)

 'passenger is safe',
 AND(
 ‘safe transitions’,
 NOT(‘threatening objects’)

Abstract Goal Tree

3. Use a synthesizer to reconcile
inconsistencies between monitors.

 'passenger is safe',
 AND(
 ‘safe transitions’,
 NOT(‘threatening objects’)

Abstract Goal Tree

AND/OR TREEList of Rules Backwards Chain
passenger is safe at V between s and t

 AND (AND (moving V at state s

 t succeeds s

 moving V at state t)

 AND (

 OR (obj is not moving at s

 obj is not locatedNear at s

 obj is not a large object at s)

 OR (obj is not moving at t

 obj is not locatedNear at t

 obj is not a large object at t)))

IF (AND('moving (?v) at state (?y)',

 '(?z) succeeds (?y)',

 'moving (?v) at state (?z)'),

 THEN('safe driving at (?v) during (?y) and (?z)'))

IF (OR('obj is not moving',

 'obj is not located near',

 'obj is not a large object')),

 THEN('obj not a threat at (?x)'))

IF (AND('obj not a threat at (?y)',

 'obj not a threat at (?z)',

 '(?z) succeeds (?z)',

 THEN('obj is not a threat between (?y) and (?z)'))

(monitor, judgement, reasonable)
(input, isType, history)
(input_data, moving, True)
(input_data, direction, forward)
(input_data, speed, fast)
(input_data, consistent, True)
(monitor, recommend, proceed)

The best option is to veer and slow down.
The vehicle is traveling too fast to suddenly
stop. The vision system is inconsistent, but
the lidar system has provided a reasonable
and strong claim to avoid the object moving
across the street.

3. Use a synthesizer to reconcile
inconsistencies between monitors.

 'passenger is safe',
 AND(
 ‘safe transitions’,
 NOT(‘threatening objects’)

Abstract Goal Tree

(monitor, judgement, unreasonable)
(input, isType, labels)
(all_labels, inconsistent, negRel)
(isA, hasProperty, negRel)
…
(all_labels, notProperty, nearMiss)
(all_labels, locatedAt, consistent)
(monitor, recommend, discount)

(monitor, judgement, reasonable)
(input, isType, sensor)
…
(input_data[4], hasSize, large)
(input_data[4], IsA, large_object)
(input_data[4], moving, True)
(input_data[4], hasProperty, avoid)
…
(monitor, recommend, avoid)

!
!

Uber Example in Simulation

L. H. Gilpin, V. Penubarthi and L. Kagal, "Explaining Multimodal Errors in Autonomous Vehicles," 2021 IEEE 8th International Conference on Data Science and
Advanced Analytics (DSAA), 2021, pp. 1-10, doi: 10.1109/DSAA53316.2021.9564178.

Evaluation of Error Detection is Difficult
Reconcile Inconsistencies

• Detection: Generate logs from scenarios to
detect failures.

• Insert errors: Scrambling *multiple* labels on
existing datasets.

• Real errors: Examining errors on the
validation dataset of NuScenes leaderboard.

Real-world Inspired Scenarios

Agenda

Motivate problem: Autonomous Vehicles are Prone to Failure

Anomaly Detection through Explanations (ADE): a Diagnosis Tool for AVs.

Ongoing Work: Adversarial Examples for as a Stress Testing Framework.

Vision: Real World Adversarial Examples

“Realistic” Adversarial examples

L. H. Gilpin, A. Amos-Binks, "Close Syntax but Far Semantics: A Risk Management Problem for Autonomous Vehicles.” To Appear in Abstracts of the AAAI Fall
Symposium on Cognitive Systems for Anticipatory Thinking.

Vision: Real World Adversarial Examples

“Realistic” Adversarial examples

The traffic lights are on top of the truck. The
lights are not illuminated. The lights are
moving at the same rate as the truck,
therefore this is not a “regular” traffic light for
slowing down and stopping at.

Anticipatory Thinking Layer for Error Detection

Testing Framework in Two Parts

Explanatory Error Detection

Content
generation

Deploy!

The traffic lights are on top of the truck.
The lights are not illuminated. The lights
are moving at the same rate as the truck,
therefore this is not a “regular” traffic
light for slowing down and stopping at.

Lack of Data and Challenges for AVs

• Existing Challenges

• Targeted as optimizing a mission or
trajectory and not safety.

• Data is hand-curated.

• Failure data is not available

• Unethical to get it (cannot just drive
into bad situations).

• Want the data to be realistic (usually
difficult in simulation).

Data from NuScenes

Anticipatory Thinking Layer for Error Detection
Approach: Content Generation

Synthetic images produced by StyleGAN, a GAN created by Nvidia researchers.

DALL-E Generates “A chair in the shape of an avocado”

Anticipatory Thinking Layer for Error Detection
Approach: Content Generation

Synthetic images DALL-E

Generate images with shadows before
tunnels.

Generate images with fallen signs.

Generate images with trucks carrying
traffic lights.

“Realistic”

Generate “dangerous driving.”

Anticipatory Thinking Layer for Error Detection
Approach: Content Generation

Synthetic images DALL-E

Generate images with shadows before
tunnels.

Generate images with fallen signs.

Generate images with trucks carrying
traffic lights.

Generate “dangerous driving.”

Anticipatory Thinking Layer for Error Detection
Approach: Content Generation

Synthetic images DALL-E

Generate images with shadows before
tunnels.

Generate images with fallen signs.

Generate images with trucks carrying
traffic lights.

Generate “dangerous driving.”

S. Xu, L. Mi and L.H. Gilpin. “A Framework for Generating Dangerous Scenes for Testing Robustness.” Under Review. 2022.

Anticipatory Thinking Layer for Error Detection
Approach: Content Generation

Synthetic images DALL-E

Generate images with shadows before
tunnels.

Generate images with fallen signs.

Generate images with trucks carrying
traffic lights.

Generate “dangerous driving.”

S. Xu, L. Mi and L.H. Gilpin. “A Framework for Generating Dangerous Scenes for Testing Robustness.” Under Review. 2022.

Anticipatory Thinking Layer for Error Detection
Approach: Content Generation

Synthetic images produced by DALL-E Generates

Generate images with shadows before
tunnels.

Generate images with fallen signs.

Generate images with trucks carrying
traffic lights.

!

Shadows

Fallen signs

Generate “dangerous driving.”

Need for Context and Explanation

“Realistic” Adversarial

• Solution: Use a cognitive architecture that helps to anticipate and understand
these failure cases.

• Assess autonomous vehicles for their risk management capabilities before
being deployed and provide incident level risk management explanations in
human readable form.

Explanatory Error Detection

Content
generation

Dev Deploy!

Approach: How it Works
Use Adversarial Images in Dev Testing

Impact
Anticipatory Thinking Layer for Error Detection

• Goal - Develop methods that a priori can explain an autonomous vehicle’s
ability to manage the risks stemming from errors in perceiving their
environment.

• One possible solution is to explain why the autonomous behavior is safe (or
risky, trustworthy, etc.) or not.

• Impact - Consumer confidence and safety features, appropriate legal and
regulatory oversight.

•

Contributions

The problem: Autonomous Vehicles are Prone to Failure.

Anomaly Detection through Explanations (ADE): a Diagnosis Tool for AVs.

Ongoing Work: Adversarial Examples for as a Stress Testing Framework.

