

Leilani H. Gilpin - MIT

Explaining Explanations

The Need for Explanations

No Explanation

mkdir: /usr/bin/jemdoc: Operation not permitted 30-9-198:~ lgilpin\$

OS Upgrade (Version Skew)

Users Need Explanations

AI Mistakes Bus-Side Ad for Famous CEO, Charges Her With Jaywalking

By Tang Ziyi / Nov 22, 2018 04:17 PM / Society & Culture

No Commonsense

Last login: Tue Feb 7 15:3 30-9-198:~ lgilpin\$ sudo mk Password: mkdir: /usr/bin/jemdoc: Ope 30-9-198:~ lgilpin\$

Imprecise (Certificate Missing)

What is Explainability?

This is a cat.

Current Explanation

From Darpa XAI

"Explanations...express answer to not just any questions but to questions that present the kind of intellectual difficulty..."

-Sylvain Bromberger, On What We Know We Don't Know

MIT Explaining Explanations

4

Deep Nets are Everywhere

Self-driving Cars

Playing Go

Making Medical Decisions

Deep Nets are Not Understandable

L.H. Gilpin

Middle "hidden" layers

Whenever correct: "whatever you did in the middle, do more." Whenever wrong: "whatever you did in the middle, do less."

> Explaining Explanations MIT

- Definitions
- Taxonomy
 - Survey: Literature review (87 papers) in computer science, artificial intelligence, and philosophy.
 - Recommendations for Evaluation
- How can Explanations Help (e.g. anomaly detection).
- Contributions and Future Work

Explaining Explanations MIT

- Explainability != Interpretability
- to humans.
- **Completeness** describes operation in an accurate way.
- An explanation needs **both**.

Definitions

• Interpretability describes the internals of a system that is understandable

Visual cues

Role of individual units

Interpretable, not complete

What we Have

Attention based

Q: Is this a healthy meal? Textual Justification

📄 A: No

...because it is a hot dog with a lot of toppings.

A: Yes

...because it contains a variety of vegetables on the table.

Complete, not interpretable

Interpretable, not complete

Why this Matters

Interpretability

- GDPR
- Liability for decision making

Why this Matters

<u>Completeness</u>

- Explaining the wrong thing.
- Making decisions for the wrong reasons.

From Claudia Perlich at Women in Data Science 2018.

MIT Explaining Explanations

11

What is Being Explained?

Visual cues

Explain processing

Role of individual units

Attention based

Q: Is this a healthy meal? Textual Justification

📄 A: No

...because it is a hot dog with a lot of toppings.

A: Yes

...because it contains a variety of vegetables on the table.

Explain representation

Explanation producing

Taxonomy

epresentation	Explanation producing	
Role of layers	Scripted conversations	
ole of neurons	Attention based	

Role of vectors

Disentangled representations

Methods that Explain Processing

DeepRED – Rule Extraction from Deep Neural Networks*

Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

Technische Universität Darmstadt Knowledge Engineering Group j.zilke@mail.de, {eneldo,janssen}@ke.tu-darmstadt.de

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA marcotcr@cs.uw.edu Sameer Singh University of Washington Seattle, WA 98105, USA sameer@cs.uw.edu

Extracting Rules from Artificial Neural Networks with Distributed Representations

> Sebastian Thrun University of Bonn Department of Computer Science III Römerstr. 164, D-53117 Bonn, Germany E-mail: thrun@carbon.informatik.uni-bonn.de

Carlos Guestrin University of Washington Seattle, WA 98105, USA guestrin@cs.uw.edu

Examples of Processing Methods

Geiger, Andreas, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? The kitti vision benchmark suite." Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012.

DeepRED – Rule Extraction from Deep Neural Networks*

Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

Technische Universität Darmstadt Knowledge Engineering Group j.zilke@mail.de, {eneldo,janssen}@ke.tu-darmstadt.de

Zilke, Jan Ruben et al. "DeepRED - Rule Extraction from Deep Neural Networks." DS (2016).

Taxonomy

epresentation	Explanation producing	
Role of layers	Scripted conversations	
ole of neurons	Attention based	

Role of vectors

Disentangled representations

Methods that Explain Representations

Network Dissection: Quantifying Interpretability of Deep Visual Representations

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba CSAIL, MIT

{davidbau, bzhou, khosla, oliva, torralba}@csail.mit.edu

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)

Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler Fernanda Viegas Rory Sayres

CNN Features off-the-shelf: an Astounding Baseline for Recognition

Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson CVAP, KTH (Royal Institute of Technology) Stockholm, Sweden

{razavian,azizpour,sullivan,stefanc}@csc.kth.se

Examples of Explained Representations

Network Dissection: Quantifying Interpretability of Deep Visual Representations

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba CSAIL, MIT {davidbau, bzhou, khosla, oliva, torralba}@csail.mit.edu

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)

Been Kim Martin Wattenberg Justin Gilmer Carrie Cai James Wexler Fernanda Viegas Rory Sayres

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, "Network dissection: Quantifying interpretability of deep visual representations," in *Computer* Vision and Pattern Recognition, 2017.

Kim, Been, et al. "Tcav: Relative concept importance testing with linear concept activation vectors." *arXiv preprint arXiv:*1711.11279 (2017).

Taxonomy

epresentation	Explanation producing	
Role of layers	Scripted conversations	
ole of neurons	Attention based	

Role of vectors

Disentangled representations

Methods that Produce Explanations

Multimodal Explanations: Justifying Decisions and Pointing to the Evidence

Dong Huk Park¹, Lisa Anne Hendricks¹, Zeynep Akata^{2,3}, Anna Rohrbach^{1,3}, Bernt Schiele³, Trevor Darrell¹, and Marcus Rohrbach⁴

¹EECS, UC Berkeley, ²University of Amsterdam, ³MPI for Informatics, ⁴Facebook AI Research

Hierarchical Question-Image Co-Attention for Visual Question Answering

Jiasen Lu", Jianwei Yang", Dhruv Batra"[†], Devi Parikh^{*†} * Virginia Tech, † Georgia Institute of Technology {jiasenlu, jw2yang, dbatra, parikh}@vt.edu

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

Xi Chen^{†‡}, Yan Duan^{†‡}, Rein Houthooft^{†‡}, John Schulman^{†‡}, Ilya Sutskever[‡], Pieter Abbeel^{†‡} † UC Berkeley, Department of Electrical Engineering and Computer Sciences ‡ OpenAI

Examples that Produce Explanations

Multimodal Explanations: Justifying Decisions and Pointing to the Evidence

Dong Huk Park¹, Lisa Anne Hendricks¹, Zeynep Akata^{2,3}, Anna Rohrbach^{1,3}, Bernt Schiele³, Trevor Darrell¹, and Marcus Rohrbach⁴

¹EECS, UC Berkeley, ²University of Amsterdam, ³MPI for Informatics, ⁴Facebook AI Research

[1] L.H. Gilpin. Explaining possible futures for robust autonomous decision-making. Proceedings of the AAAI Fall Symposium on Anticipatory Thinking, 2019. [2] L.H. Gilpin et al. Anomaly Detection Through Explanations. Under Review.

The activity is

A: Mountain Biking

A: Road Biking

... because he is riding a bicycle down a mountain path in a mountainous area. a bicycle down the road.

.... because he is wearing a cycling uniform and riding

Park, Dong Huk, et al. "Multimodal Explanations: Justifying Decisions and Pointing to the Evidence." 31st IEEE Conference on Computer Vision and Pattern Recognition. 2018.

> The best option is to veer and slow down. The vehicle is traveling too fast to suddenly stop. The vision system is inconsistent, but the lidar system has provided a reasonable and strong claim to avoid the object moving across the street.

A Problem: Insides Matter

The More Complex (Deeper) The Deeper the Mystery

8 layers; acc 84.7%

VGG (2014) 19 layers; acc 91.5%

GoogLeNet (2015) **ResNet** (2016) 22 layers; acc 92.2% 152 layers; acc 95.6%

What is Being Explained?

Visual cues

Completeness to model

Role of individual units

Attention based

Q: Is this a healthy meal?

📄 A: No

...because it is a hot dog with a lot of toppings.

Textual Justification

A: Yes

...because it contains a variety of vegetables on the table.

Completeness on other tasks

Human evaluation

Taxonomy

	Processing	Representation	Explanation producing
Methods	Proxy Methods Decision Trees Salience Mapping Automatic-rule extraction	Role of layers Role of neurons Role of vectors	Scripted conversations Attention based Disentangled representation
Evaluation	Completeness to model Completeness on a substitute task	Completeness on a substitute task Detect biases	Human evaluation Detect biases

Challenges in Explainability

- Standards and metrics for explanations
 - How to evaluate explanations?
- Current metrics of evaluation are "fuzzy"
 - User based evaluations are not always appropriate
- Benchmarks for safety-critical and mission-critical tasks.

But How Can Explanations Help?

Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning

Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter and Lalana Kagal Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Cambridge, MA 02139 {lgilpin, davidbau, bzy, abajwa, specter, lkagal}@ mit.edu

Ex-post-factoStatic

L.H. Gilpin

- Dynamic
- Self-explaining architectures.

Explanatory Anomaly Detection

[1] L.H. Gilpin. Explaining possible futures for robust autonomous decision-making. Proceedings of the AAAI Fall Symposium on Anticipatory Thinking, 2019. [2] L.H. Gilpin et al. Anomaly Detection Through Explanations. Under Review.

- Hierarchy of overlapping selfexplaining committees.
- Continuous interaction and communication.
- 3. When failure occurs, a story can be made, combining the member's explanations.

Explanations can Mitigate Common Problems

Reconcile inconsistencies between explanations.

Reconcile conflicting explanations

The Trollable Self-Driving Car

Humans are pretty good at guessing what others on the road will do. Driverless cars are not—and that can be exploited.

Reason about new examples. Utilize commonsense knowledge.

Contributions and Future Work

- - What [part or parts] is being explain?
- Future directions
 - How can a network explain itself?
 - How to incorporate explainable methods?
 - Is there a provable trade-off between completeness and interpretability?
 - What explanations are best suited for policy?
 - See our follow-up paper: "Explaining explanations to society"

• A taxonomy and best practices for explanations via completeness and interpretability

